Sea

20160315 88

Theme Conveners: C. Hamilton Ellis and Nigel Clayton ◦ Display Designers: Austin Frazer and Ellis Miles

The memorial to British discovery by sea is the chart of the globe. Straits, bays, seas, islands, headlands, rivers, and even whole countries – all the world over they mirror back names from Britain.

Britain was the first sea-discovery of our forebears. For some races this island, in itself, might then have brought an end to voyaging; but for us it has been a harbour, rather, from which we have continued to launch ourselves out into the world. Of all the arenas where the destinies of nations are decided we still prefer to face our difficulties at sea.

Four hundred years ago the nation was in a pass from which the only escape was by new foreign markets for our goods, and the establishment of trade with countries overseas. It was in seeking them out in the uncharted world that British sailors made greater contributions to sea discovery than those of any other nation. They had the enterprise and leadership, they built the ships that would keep the seas and, besides these, they had an ingrained curiosity and skill which laid the foundation of scientific navigation.

20160315 85

James Cook

In this small gallery of the Dome we cannot pay tribute to all the names renowned for discovery at sea; we have, instead, singled out the greatest of them all – James Cook – for special mention. His life is summarised by the names of his exploring ships – Endeavour, Resolution, Adventure, Discovery. He was a great seaman, but unique in his time for the attention he gave to the welfare of the men who worked his ships. He was a great navigator, but his genius as a surveyor made each voyage classical, each another foundation stone for modern geography. He was a very great explorer and a man of science, but his humanity and understanding were such that no extermination or slavery followed his discovery of a new race or people.

In six years Cook systematically eliminated a landmass – the Great Southern Continent – the existence of which had been firmly imagined by geographers for twenty-five centuries. His worth as a hydrographer cannot be overestimated.

Hydrography

It was the British who first set about a systematic charting of’ the whole world and for many years it was British charts, which we did not keep to ourselves, that the ships of all nations relied on. Modern methods in hydrographic survey, as well as the many uses for which charts are now produced, are illustrated on this gallery, together with other aids to navigation and tide prediction.

20160315 87

Research ships

But exploration by sea has not stopped at charting the surface waters. The cloak of Drake and Cook has now fallen on the men of science who by physical, chemical and biological techniques are adding to our knowledge of all its aspects. This phase began with the sailing of H.M.S. Challenger in 1872 – the first ship to be fully engaged on oceanographic research. Her modern counterpart is the Research Ship Discovery II, famous particularly for her work in Southern waters.

Science of the sea

In the second part of this gallery the displays show some of the things that science can tell us about the sea – its composition, its physical behaviour, the nature of the ocean beds and the living creatures that inhabit it. British research has been particularly active in studying the animals and minute plants that live near the surface – the plankton. They play a vital part in the cycle of life in the sea – not only for fish but even for many whales which feed almost entirely upon these diminutive animals.

Outer Space

20160315 92

Theme Convener: Penrose Angwin, M.B.E. ◦ Display Designers: Austin Frazer and Eric Towell

The explorers of outer space – beyond the ionosphere – are the astronomers. With intellect and imagination they have reached out millions of miles and brought down the knowledge on which our understanding of the universe is based.

About time

One of the immediately practical uses of astronomy is the accurate determination of time. Today we can measure it to a thousandth of a second but we still use the motions of heavenly bodies as our primary standard. This subject, particularly as it bears upon life and work today, forms the first sequence of displays on the Outer Space gallery. Its entrance can be recognised from all over the Dome by a replica of the famous Greenwich Time Ball, which used to give a time check at one o’clock every day so that ships in the Thames could regulate their chronometers.

Modern knowledge of the heavens is an international achievement in which British astronomers have played a great part. Most of the displays that follow on this gallery, giving vivid impressions of various parts of the universe, are based, therefore, on knowledge contributed by a number of nations.

The planets

They begin with our own earth – presented, not as we know it from first-hand experience, but as one of a number of heavenly bodies with its own peculiar way of behaving in space. Next we show the major planets – Mars, Jupiter, Saturn and Uranus, as they might be seen from their satellites. Into this series of displays comes our own satellite, the moon, whose surface we know much more intimately than that of any of the planets. Amateur astronomers have added a lot to this knowledge, in determining the depth of the various craters, estimating the changing surface temperatures and mapping its features.

The stars

Beyond the solar system, which is illustrated in moving model form, we have to go vast distances in our imaginations before reaching other bodies. Our own solar system is merely a tiny entity in the galaxy we call the Milky Way. Outside the Milky Way are many other vast clouds of stars – the nebulae. At such distances we can only see stars, any planets they may have around them are unknown to us.

Our own sun is, in many ways, a typical star, and by studying it in detail astronomers have come to learn much about stars in general. Following on this, brilliant reasoning by physicists and astronomers (many of them British) has given us knowledge of the life history of a star. We present this by a new visual technique in the Outer Space gallery.

Telescopes

Of all discoverers, Isaac Newton must surely be rated the worlds greatest. Some of his achievements are shown in the “Physical World” section of the Dome. But his fertile mind contributed a great deal also to astronomy. It was he who showed that the physical universe is governed by law and not by caprice. In addition, he designed the first reflecting telescope, invented the calculus and laid the foundations of spectroscopy – all tools of the astronomer.

20160315 91

Since Newton, Britain has continued to be very active in designing telescopes and the gear associated with them. As modern examples we show a replica of the new St. Andrews telescope and, on the ground floor, the 74-inch telescope now being completed for use in Australia. But bigger and better though our telescopes become, it is now believed that a point will be reached in space beyond which they will never be able to penetrate, because the universe is expanding at a speed greater than that of light.

The radio telescope

The latest tool of astronomers is radio. A few years ago it was discovered that short-wave radio signals came to us from outer space. It is now known that these originate in part of the sky where there are no visible stars. How they arise is still a mystery. When we solve it, we shall know more about the origin of cosmic rays. You can see in this section what these signals look like.

But as well as using radio passively, as it were, by studying signals originating in outer space, we can also employ it actively for astronomical exploration. This is one of the newer uses of radar, which, in short, enables us to see by means of radio waves. Strong pulses are sent out from the earth and received again after reflection from heavenly bodies. By this technique we can locate meteors, for example, even when they are invisible to the eye, and calculate their velocity accurately.

The main display of this new method is the radio telescope which visitors themselves will be able to operate. Its aerial is on top of the Shot Tower and can be beamed on to the moon. The signals transmitted take about two and a half seconds to get to the moon and be reflected back to earth. Visitors will be able to see them clearly on a cathode ray tube.

This radio telescope is an advance on equipment yet produced because it can reach the moon whenever it is above the horizon. Other transmitters have only obtained echoes when the moon was near the horizon – rising or setting. The radio telescope will be used solely for scientific purposes after the Exhibition closes, and even while it is open it will be contributing to contemporary research on problems of fading. It is hoped that this will start by giving us more information about conditions in the upper atmosphere of the Earth and on the surface of the moon.

The Living World

20160315 96

Theme Convener: Kenneth Chapman ◦ Display Designers: Austin Frazer and Stirling Craig

In the foregoing sections of the Dome we have shown something of man’s achievement in exploration from the earth downward, outward and upward to the extremes of outer space where only intellect and imagination can carry him. The results are ever-increasing knowledge, and that knowledge is Science.

But this British desire to explore expresses itself in yet another way – as a probing deep inside nature to discover the secrets of the processes by which it works. Those who concern themselves with inanimate things are the physicists and chemists; the explorers of the world of living things are the biologists. The researches of these men and women are no less explorations than the journeys of Livingstone or the voyages of Cook. They do not necessarily have to travel far in pursuing their discoveries, but it so happens that some of them have been explorers by land or sea as well. A number of our own leading men of science to-day have been members of expeditions, for example to polar regions, the tropics or the Himalayas.

In exploring the living world, our biologists have been eminent in studying animals and plants as they occur in nature, why and how they live as they do and how they have come to be what they are. Here, in science, they have shown a trait characteristic of the British as a whole – a peculiar sympathy and understanding of the animals and plants around them. It expresses itself in many ways – not only in the work of our early naturalists but in stockraising and the English garden – to mention only two.

20160315 93

Our early biologists

Of the early British biologists, three have been chosen to illustrate three of the directions from which the living world can be explored. They are John Ray who studied animals and plants so that he could classify them in their natural orders, Robert Brown, a laboratory scientist who was interested in their structure, and Gilbert White who made long and patient observations of the ways in which animals and plants live in their natural environment.

Charles Darwin

Dominating this section, just as his work still influences all modern biology, is Charles Darwin. The results of his work and thought, all through the world, are incalculably great. He had within him the sympathetic insight of the countryman, an accurate memory of distant explorations, the discipline of a naturalist and biologist and, above all, an intellect that could analyse and range his myriad observations into a theory that brought about a revolution in the scientific world. This was Natural Selection.

Associated with Darwin in the displays are the more notable of his contemporaries such as Huxley and Wallace, whose work also was strongly influenced by travel and exploration abroad.

20160315 95

Modern research

The section culminates in a number of examples of modern work and research in biology – all of them showing an acceptance of the evolutionary principles that Darwin formulated, but pushing forward the frontiers of knowledge even further – study of mimicry in butterflies and the evolution of their form, to investigation of learning in birds. Pursuing the subject of learning, contemporary research on the brain and nervous mechanisms of octopuses and squids is demonstrated. The results of this have applications far beyond these creatures themselves and bear upon the working of the human nervous system.

Other displays are concerned with the mechanism of inheritance, with the intimate relationship between animals and their environment, migration, and the evolution of mankind. Taken together, all these examples show how the work of Charles Darwin has influenced the approach of those who to-day explore and discover in the Living World.

The visitor may notice that certain of our outstanding biological achievements with practical value are not included in this section. These are shown in those Pavilions to whose stories they particularly contribute. Pest control, for example, is in “The Land”, science in agriculture is in “The Country”, medicine and physiology are in the “Health” Pavilion.